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中 文 摘 要 ： 策略管理研究的中心議題是發掘廠商成功與失敗的因素，長

期財務指標廣泛用來衡量廠商長期持續績效。然而，以往研

究指出財務績效指標含有隨機漫步效果，因此，究竟廠商績

效是來目宫理能力還是運氣變成混淆。本研究旨在發掘銀行

體系之績效，區分此績效是來自管理能力或是運氣。本研究

依據看得到的年度財務績效指標，將銀行分為兩群，潛在群

組成長分析(LCGA)將母體分為兩個異質的群組，此兩群組之

不同的績效軌跡係由看不到的因素所造成。長期平均報酬率

較高的群組被定義為成功群組，有效高的管理水準；而長期

平均報酬率較低的群組則被定義為錯誤群組，管理水準較

低。當較高管理水準的廠商呈現的長期報酬率較較低管理水

準之廠商的平均報酬率低，被定義為「壞運氣」；相對地，

較低管理水準的廠商呈現的長期報酬率較較高管理水準之廠

商的平均報酬率高，則被定義為「好運氣」。實證研究結果

發現，有 10 家低管理水準之銀行，因運氣好而長期績效較高

管理水準之銀行佳；而有 2家高管理水準之銀行，因運氣差

而長期績效較低管理水準之銀行差。此研究結果支持殊途同

歸的假說，即我們雖不知道各廠商背後不同的策略因素，廠

商可由其看得到的績效分群。此外，分析較優績效的研究宜

先排除好運氣及壞運氣影響之廠商，以提高研究結果之有效

性。 

中文關鍵詞： 持續性較優績效、潛在群組成長分析法、運氣、銀行產業 

英 文 摘 要 ： The central theme of the strategic management 

research is to identify why some firms succeed and 

others fail. Longitudinal financial indicators are 

widely used to investigate the persistence of 

performance of firms in the long run. However, the 

variation of annual financial indicator is found to 

follow random walk. It is ambiguous whether the 

persistence of performance is driven by latent 

managerial factors or simply because of luck. This 

research aims to identify performance driven by luck 

from those driven by latent managing factors such as 

capabilities or resource employment in the banking 

sector. Banks are classified into two groups using 

the observed annual return data. The latent class 

growth analysis (LCGA) identified two heterogeneous 

groups, which presents the unobserved factor that 

driving the observed trajectories of the annual 

performance. The group with high long-term average 



return is defined as successful firms competing at 

the high-level axis and the other group is defined as 

competing at the low-level axis. Good luck is then 

defined as the situation that firms at the high-level 

axis performed worse than the average return of the 

firms competing at the low-level axis. Bad luck is 

defined as the situation that firms at the low-level 

axis performed better than the average return of the 

firms competing at the high-level axis. The results 

show that ten banks which successful performance 

trajectories of at the low-level axis were driven by 

good luck and those of two firms at the high-level 

axis were driven by bad luck. This implication 

supports the proposition of equifinality: even 

without knowing their underlying strategic 

differences, firms can be grouped simply by their 

observed performance. In addition, the performance 

driven by good luck or bad luck should be excluded 

when researchers investigate the sources of superior 

performance. 

英文關鍵詞： persistent superior performance, latent class growth 

analysis, luck, banking industry 

 



Hot hands: Is firm performance sourced from luck or capability?  

 

Abstract 

The central theme of the strategic management research is to identify why some firms succeed and 

others fail. Longitudinal financial indicators are widely used to investigate the persistence of 

performance of firms in the long run. However, the variation of annual financial indicator is found 

to follow random walk. It is ambiguous whether the persistence of performance is driven by latent 

managerial factors or simply because of luck. This research aims to identify performance driven by 

luck from those driven by latent managing factors such as capabilities or resource employment in 

the banking sector. Banks are classified into two groups using the observed annual return data. The 

LCGA identified two heterogeneous groups, which presents the unobserved factor that driving the 

observed trajectories of the annual performance. The group with high long-term average return is 

defined as successful firms competing at the high-level axis and the other group is defined as 

competing at the low-level axis. Good luck is then defined as the situation that firms at the 

high-level axis performed worse than the average return of the firms competing at the low-level axis. 

Bad luck is defined as the situation that firms at the low-level axis performed better than the 

average return of the firms competing at the high-level axis. The results show that ten banks which 

successful performance trajectories of at the low-level axis were driven by good luck and those of 

two firms at the high-level axis were driven by bad luck. This implication supports the proposition 

of equifinality: even without knowing their underlying strategic differences, firms can be grouped 

simply by their observed performance. In addition, the performance driven by good luck or bad luck 

should be excluded when researchers investigate the sources of superior performance. 

 

Keywords: persistent performance, latent class growth analysis, luck, banking industry 

 

1. Introduction 

The central theme of the strategic management research is to identify why some firms succeed 

and others fail. If the annual performance (success or fail) of a firm follows a random binomial 

distribution like flipping a two-side coin, only one out of 1,024 (=2
10

) firms can luckily survive in 

10 year. Henderson et al (2012) find that the 10
th
 percentile competitive performers sustainably 

survive more than 40 years long and some of them show persistent performance. How have these 

firm succeeded? Because of luck or capability?  

Many people believe that basketball players who make a home-run are more likely to hit the next 

shot than players who miss a shot (Camerer, 1989). This hot-hand fallacy indicates that people tend 

to have difficulty thinking properly about independent events because successful shot, or “home-run 

strike,” boosts the observers' subjective probability of another hit (Gilovich, Vallone, and Tversky, 

1985). Contrarily, people belief that, for random events, runs of a particular outcome (home-run 



strike) will be balanced by a tendency for the opposite outcome, i.e., a streak of “lucky” events is 

likely to end. This gambler’s fallacy presents that a streak of heads makes it more likely that the 

next flip will be a tail, that is, the random sequences should exhibit systematic reversals (Rabin and 

Yayanos, 2010). Hot hands are found exist in fund investment (Hendricks, Patel and Zeckhauser, 

1993), especially among the superior hedge funds managed by skilled fund management 

(Jagannathan, Malakhov and Novikov, 2010). 

The hot-hand and gambler’s fallacies indicate that people usually adjust their believe over time 

by selecting an indicator, which is a function of past observations and has a observable performance 

(Brock and Hommes, 1997). This iterative procedure can be described by the conditional 

probability function: 

 
   

       q~Probq~pProbqProbqpProb

qProbqpProb
pqProb




  

Consider, for example, a banker who knows, prior to the approval of an investment project, the 

successful rate of the new project is 10%, prob(q). In economic boom time, the chance for such 

project to yield above average profit is 50%, Prob(p|q) while the recession time is only 5%, 

prob(p|~q). According to Bayes's theorem, the posterior probability that such project can yield 

above-average profit Prob (q|p), that approved by the firm who perceived the economic might be 

booming is (0.50)(0.10)/[(0.50)(0.10) + (0.05)(0.90)] = 53%. This perceived probability is higher 

than a naïve guess (50%). 

Several strategic management studies use Bayesian epistemology to interpret the causal 

relations between competitive advantage and firm performance (Denrell, 2004; Powell, 2001; 2002; 

2003; Tang and Liou, 2010). They suggest a probabilistic inference: ‘Sustainable competitive 

advantage is more probable in firms that have already achieved sustained superior performance” 

(Powell, 2001: 879). Furthermore, with resource configuration as an auxiliary hypotheses, Tang and 

Liou (2010) illustrate how financial indicators can be used to unfold the resource and capability 

bundles, which are indicated to be indistinguishable because they have complex linkages (Powell, 

Lovallo and Caringal, 2006), complementarities (Milgrom and Roberts, 1990; 1995) and tacit 

dimensions (Nelson and Winter, 1982).  

Since the evidence of superior performance cannot conclusively indicate the existence of 

competitive advantage, it is a difficult task to identify firms with competitive advantage from those 

without. On one hand, firms generating superior performance may reflect their competitive 

advantage through operating in a favorable industry structure (monopoly rents), employing difficult 

to imitate resources (Ricardian rents), taking innovative projects (Schumpeterian rents), or just be 

lucky (Barney, 1986). On the other hand, these firms may fail to show distinguished performance 

simply because of unluckiness. Similarly, firms that lack of capabilities in developing and 

augmenting its resources may still show remarkable performance simply due to lucky randomness 

(Denrell, 2004; Levinthal, 1990; Henderson et al., 2012).  

Most studies use a single financial return as a proxy of firm performance. These ratios include 

book return such as return on equity (ROE), return on assets (ROA), and return on investment 

(1) 



(ROI), as well as market measures such as Tobin’s q, PE ratio, and stock prices. Many financial 

studies have shown that financial ratios usually follow a random-walk pattern (Tippett and 

Whittington, 1995; Whittington and Tippett, 1999; Jose and Lancaster, 1996). The finding that the 

success of a majority of firms in COMPUSTAT are subject to chances due to lucky random walks 

instead of systematic determinants (Henderson et al., 2012) is not surprising since the result is 

derived from a single randomly-moved financial ratio, ROA or Tonbin’s q, as the proxy of firm 

performance.  

The agency cost and the theory of the firm argues that the firms in the competitive market are 

forced “the evolution of devices for efficiently monitoring the performance of the entire team and of 

its individual members” (Fama, 1980). Firms maximize their value only if the interest of its 

stakeholders including shareholders, bondholders, employees, consumers, capital market, and the 

entire society, are satisfied (Porter and Kramer, 2011). If competitive advantage is the ability of a 

company to transfer strategic resources to create long-term value to its stakeholders, an indicator 

that measures a firm’s long-term value may indicate the unobservable competitive advantage more 

appropriately than a historical short-term financial ratio. 

1.1 The research questions 

To examine the sources of firm performance with an empirical study, one has to determine, among 

others, two major issues: (1) the selection of an appropriate indicator, usually an evidenced outcome, 

as a proxy variable of firm performance to distinguish firms that have reached “success” from 

others; and (2) the identification of sources, commonly refer to the unobserved competitive 

advantage (Barney, 1991; Grant, 1991; Porter, 1980; 1985), organization or resource configuration 

(Miller, 1986; Siggelkow, 2002; Tang & Liou, 2010; Teece, et al. 1997), and capabilities (Grant, 

1991), that lead to the underlying performance. 

To precisely address the central theme in strategic management research, we need to answer two 

questions as follows: 

1. The single financial ratios commonly used in the strategic management studies poorly 

indicate competitive advantage of the firm because most of them are short-term measures. Can a 

long-term value measurement that can better predict the performance of firms?  

2. Why some firms are more sustained than others in huge environmental turmoil? Are they 

because of luck or capabilities? Based on the indicator developed in question 1 this research studies 

performance persistence in global banking industry across the global financial crisis. 

1.2 Research framework 

The report is structured as follows. The first section describes the research background, motivation 

and questions. The second section reviews the related literatures including the causal linkage 

between competitive advantage and firm performance and the drivers of randomness. The third 

section develops the research model by giving definitions about short-term and long-term 

performance, luck and unluck, and latent mechanism driving long-term performance. The latent 

class growth model for analyzing the long-term trajectories of performance is introduced. The 



empirical study is given in section four,. Section five provides managerial implications, conclusions, 

and suggestions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research framework 

 

 

2. Literature Review 

2.1 The probabilistic view of competitive advantage and competitive disadvantage 

Competitive advantage is not visible but can be revealed by the performance of the firm (Tang and 

Liou, 2010). However, since the superior performance a firm may also can be the result of or some 

manifestation of luck (Barney, 1986), the provision of performance does not guarantee the existence 

of competitive advantage. Therefore, the relationship between competitive advantage and 

performance is not deterministic but probabilistic (conditional). That is, the firms that have 

achieved superior performance may not definitely lead by competitive advantage however they are 

most probable to have competitive advantage (Powell, 2001; 2002; 2003). The probabilistic 

relationship is stated as equation (1), whereas, Prob(𝑞|𝑝) : the probability that a firm has 

sustainable competitive advantage given the provision of performance of that firm; prob(q): the 

probability that a firm has competitive advantage among a group of firms; prob(~q) : the 

probability that a firm has no competitive advantage among a group of firms; Prob(𝑝|𝑞): the 
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probability that a firm’s performance is the result of sustainable competitive advantage; 

Prob(𝑝|~𝑞): the probability that a firm’s performance is not led by sustainable competitive 

advantages achieve sustained superior performance. 

Tang and Liou (2010) generalize equation (1) to equation (2) illustrate the relationship between 

competitive advantage hypotheses or theories (𝛉) and superior performance (Y). They then extend 

the competitive advantage- performance causal relation by introducing organizational configuration 

as the auxiliary hypotheses to mediate the two. Furthermore, Liou (2011) add strategy to the front of 

the causal relations to evaluate the effects of corporate strategy on firm value.   The causal 

relation of strategy-competitive advantage-configuration-performance can be expressed as equation 

(3).   

P( | )P( ) P( | )P( )
P( | ) = 

P( | )P( )+P( |~ )P(~ ) P( )


Yθ θ Yθ θ
θY

Yθ θ Y θ θ Y
 

 

P( , | ) = P( | , ) P( | )  θ Y θ Y Y  

( , )x   

Whereas is an auxiliary proposition representing a mixture of heterogeneous resource bundles 

x and their associated weights λ.  

This epistemological significance of the Bayesian process is a parameterizing process that to 

assert a relationship between ‘rational constructions’ and the unobserved properties of behavioral 

theories, and to derive an instance of the relationship based on empirical data that are easier to 

observe and measure (Tang and Liou, 2010: p. 45). Bayesian discriminant model (Sivia, 1996), 

which assumes that the population of firms is composed of two unaffiliated factions: those with 

competitive advantage and those without (i.e., having competitive disadvantage) is suggested to be 

used to extract the causal series with tangible data. The probability of the competitive advantage (or 

disadvantage) hypothesis θ is derived from statistical inference based on the unobserved 

configurations of heterogeneous resource bundles  and the empirical evidence of performance Y. 

They subsequently propose a resource configuration of competitive advantage to generate the 

possible rational construction of sustainable competitive advantage and competitive disadvantage. 

2.2 The causal linkage between competitive advantage and performance 

Causal ambiguity, which refers to the knowledge-based impediments to competitors’ imitation, 

plays an important role in strategic management thinking. Strategic researchers suggest that 

company resources can generate causal ambiguity in sustainable competitive advantages, which 

exploit information asymmetry and raise barriers to imitation, and thus yield superior performance 

(Barney, 1991; Coff, 1999; Lippman and Rumelt, 1982; Peteraf, 1993; Porter, 1985; Reed and 

DeFillippi, 1990). The resource configuration framework based on tangible information attempt to 

uncover the causal ambiguity between competitive advantage and performance.  

Information constitutes those significant regularities residing in the data that receivers attempt to 

extract from. The act of extracting involves an assignment of the data to existing categories 

(2) 

(3) 



according to some set of pre-established schemas or constructs that shape expectations of the 

receivers (Boisot and Canals, 2004). These a priori expectations will be in turn modified 

subsequently by the arrival of information (Arrow, 1984).  

Data is the originating in discernible differences between at least two physical states (Boisot and 

Canals, 2004) such as higher or lower stock price, new or old formula, and various levels of product 

sales. Data is the resource as well as the constraining affordance to transform it into information. 

Data can be the financial variables or survey results generated by the focal firm. However, not every 

data is meaningful unless the informees (the individual, the organization, the firm, etc.) obtain the 

data and comprehend it (Kuhn, 1974). Although a bountiful supply of data are available to the 

public, only those in possession of the “key position” can epistemically extract from it (Singh, 

1999). This cryptographic nature of the data limits the ability of individuals or firms in transforming 

(receiving, storing, retrieving, transmitting) the data into information (Williamson, 1981).  

Financial statements systematically record firm’s daily activities and operations which 

notoriously leave a trail of derivative information for outsiders. Financial ratios are basic data 

revealing the corresponding firm’s dynamic strategies in response to the external environment 

(Frecka and Lee, 1983; Lee and Wu, 1988; Lev, 1969). However, the undaunted great number of 

financial indicators and ratios are chaotic to use. Financial managers usually compare ratios with 

those of benchmarks to examine the strength and weakness of the firm.  

2. The Research Model 

3.1 Luck in performance 

There is no universally accepted definition of “persistent superior performance”. This ambiguity has 

encouraged scholars to develop many different methodologies for testing their theories and 

identifying long-term outperformers. Persistent superior performance includes two qualities: 

superiority and sustainability. Whatever methods are used to measure sustained superior 

performance must quantify and satisfy both elements (McGahan and Porter 2003). While superior 

performance is measured using yearly data, sustainability is usually examined by statistical 

methodologies with longitudinal data. This research defines short-term superior performance as 

above-industry average in a specific year. It further defines long-term superior performance as the 

tendency to perform higher than long-term industry average over the study period.  

Assume that firms are competing at two axes: the axis of success and the axis of error (Powell 

and Arrengel, 2007). Firms competing at the axis of success are high-performing firms with 

inimitable resources and capabilities while those competing at the axis of e fail to attend to the 

activities, resources and opportunities that are equally available to all firms. We therefore expect 

that better capabilities in managing inimitable resources are positively associated with higher 

performance than those with worse managing skills. However, the performances of all firms are 

driven not only by capability or resources but also by luckiness (Barney, 1986). Figure 2 illustrates 

the probabilistic distribution of performance along the given level of capability at the two axes. 

There is bad luck for firms at higher level of capability perform worse than the average performance 



of firms at the lower level of capability. Contrarily, it is good luck for forms at lower level of 

capability performance superior than the average performance of firms at the higher level of 

capability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distributions of performance at two axis of competition 

 

We need a methodology to classify firms at different levels of capability provided that the 

grouping variable is unobservable. The latent class growth analysis (LCGA) can serve this purpose. 

 

3.2 Latent Class Growth Analysis 

LCGA is a group-based, multi-parametric approach. LCGA models the probability of membership 

in the observed distinct (performance) trajectory groups where the grouping variable is unavailable 

or unknown (Jung and Wickrama 2008; Nagin 2001; 2005; Nagin and Tremblay 1999). LCGA is a 

special type of growth mixture model, which is particularly useful for topic areas with the need to 

identify and understand unobserved subpopulations and recognizing the unobserved heterogeneity 

in measurement functioning in organizational research (Wang and Hanges 2011). In this latent 

variable modeling framework, the random effects on individual differences are reconceptualized as 

continuous latent variables. Between-class differences are measured by the intercept and the slops 

of the growth functions. 

LCGA groups individuals in a way that the longitudinal individual response trajectories within 
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performance trajectory 

Axis of error 

Axis of success 
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groups are homogeneous but those of different groups are heterogeneous (Jung and Wickrama 2008; 

Sturgis and Sullivan 2008). LCGA fits each group with a different model and assigns different 

parameter values across unobservable subpopulations (Jung and Wickrama 2008). It is particularly 

useful to identify and model the probability of membership in identical trajectory groups where 

grouping variables are unobservable (Jung and Wickrama 2008; Nagin 2001; 2005; Nagin and 

Tremblay 2001).  

For persistent performance analysis, LCGA can identify groups of firms with homogenous 

growth trajectories based on observable financial indicators (observable consequence variables). 

Each firm has some estimated probability of membership in each trajectory class. These are referred 

to as posterior probabilities (Feldman, Masyn, and Conger 2009). Each firm’s estimated 

performance trajectory is a function of the probability of membership in each of the classes. The 

group trajectory representing within-group members’ long-term performance pattern provides a 

framework for post-hoc identification and description of differences in change between groups. 

3.3. Latent trajectories of performance groups 

LCGA is used to group individual growth parameters rather than observed outcomes (Jones, Nagin 

and Roeder, 2001). It identifies K latent classes (the latent trajectory groups) with distinct 

developmental trajectories depicted with different growth parameters (Sturgis and Sullivan, 2008). 

The growth trajectory identified for each group is based on the vector 
 

describing the longitudinal sequence of firm i’s performance over T points in time for n firms. In 

our case, the elements of Y are binary values indicating the presence or absence of superior 

performance in a given period. LCGA assumes that there are K unobserved trajectory 

subpopulations of firms within an industry, differing in parameter values. The maximum likelihood 

method is used to estimate these unknown parameter vectors that determine the shapes of the 

trajectories (Jones, Nagin, and Roeder 2001; Jones and Nagin 2007; Haviland, Jones, and Nagin 

2011). The form of the likelihood function can be selected to conform to three types of data: count 

data, psychometric scale data, or binary data. For binary data, which we use in the present study, the 

 1 2, , , , 1, , ,i i i iTY y y y i n 



likelihood function is based on the Bernoulli distribution. 

LCGA allows one to incorporate variables other than time, including both time-dependent 

covariates and time-invariant predictors (Jones, Nagin, and Roeder 2001). In the present study, we 

include lagged performance (Bollen and Curran 2004; 2006, Sec. 7.5) and the annual economic 

growth rate, both time-varying variables, in order to partial out the effects of cumulative advantage 

and environmental changes. The adjusted latent trajectories of the firms better reflect the latent 

factors driving the performance changes over time. We use the binary logit model to fit the 

dichotomous data (superior performance or otherwise) resulting from the ‘above the industry 

average’ criterion. Specifically, letting Yijk be the binary performance response (1 = superior; 0 

otherwise) for firm i at time t in group k, we have  

 

     ,       (3) 

 

where , , and  denote the latent intercept, latent linear trajectory, and latent quadratic 

trajectory for group k respectively. The observable variable ecogt is the economic growth rate at 

time t. The parameters  and  are the random coefficients associated with Yt-1 and ecogt for 

group k. The degree of the polynomial logit model is determined by trying different models and 

choosing the degree that best fits the data. The ellipsis in the formula represents these higher-order 

terms. 

Grouping is based on the adjusted latent trajectories (reflecting the categorical latent variables) 

of the firms. Moreover, the entry status, a time-invariant variable, is included to examine and to 

delineate its effect on the groups formed by using the multinomial logit model given by 
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where Ci = k means that firm i belongs to group k.  and  are taken to be zero for 

identifiability (Jones, Nagin, and Roeder, 2001).  

 

4. Empirical study 

Our sample are commercial banks, savings institutions and credit/loan providers, covered in the 

Compustat North America Database by SIC code 6020, 6022, 6035, 6036, 6156, and 6163. This is 

the competing industry with a great many banks disappearing (died or acquired by other bans) in the 

space of last decades. There are 2,129 such banks in the Compustat database from 2000 to 2013. 

This period also covers at least two phases of the industry business cycle, if the five-year period 

depicted by McGahan and Porter (1999) and Rumelt (1991) is accurate. The research selected 

return on average assets (ROAA) to indicate firm performance and deleted banks with data less than 

five years, 87 banks are kept in the final dataset. In the following section, median is used to present 

average in order to avoid distortion by outliers. 

 

4.1 The results 

The ROAA identified two trajectory groups (Table 1). The first group, which includes 60 banks 

(69% of the population), fit an upward linear growth pattern. The second group, which consists of 

27 banks, (31%) presents a constant trajectory higher than that of the first group. The capability 

levels are identical for firms classified in the same group and are heterogeneous for firms in one 

another. The second group presents a higher level of capability since its performance trajectory is 

constantly higher than the first group. The long-term average ROAAs in the study period for the 

group at high-level of capability is 3.2%, which is higher than the other group (2.0%). In the 

low-level capability group, 10 out of the 60 banks have long-term average ROAA higher than the 

average for firms at the high-level capability: the membership of performance trajectory of these 

banks might be driven by good luck. There are only 2 out of the 27 banks at the high-level 

capability have long-term ROAA lower than the average for firms at the low-level capability: the 

membership of trajectory of these banks might be from bad luck.   

Table 2 presents the performance indicators of the two trajectory groups. They are identical in 

terms of efficiency ratio but are heterogeneous in terms of productivity of personnel. 

 

  

1 1



Table 1. Membership grouping and shapes of trajectories by ROAA 

Group Parameter Estimate Error Parameter=0 Prob > |T| 

      
1 Intercept -2.153 0.232 -9.279 0.000 

 
Linear 0.130 0.030 4.268 0.000 

2 Intercept 1.387 0.154 9.004 0.000 

      

 
Group membership 

   
1 (%) 68.52836 5.18367 13.22 0 

2 (%) 31.47164 5.18367 6.071 0 

 

 

 

Figure 3. Performance trajectories of latent groups 

 

 

Table 2. Performance indicators of trajectory groups 

Trajectory group Frequency ROA Efficiency Productivity 

1 60 0.0026 0.5872 0.0142 

2 27 0.0033 0.5846 0.0175 

Note: Efficiency Ratio = Total Non-interest expenses / Total Net Interest Income (before provisions) 

plus Total Non-Interest Income; Productivity= Personnel expenses / Employee 

 

 

 

5. Discussion and conclusions 

 

This research aims to identify performance driven by luck from those driven by latent 

managing factors such as capabilities or resource employment in the banking sector. Banks are 

classified into two groups using the observed annual return data. The LCGA identified two 

heterogeneous groups, which presents the unobserved factor that driving the observed trajectories of 



the annual performance. The group with high long-term average return is defined as successful 

firms competing at the high-level axis and the other group is defined as competing at the low-level 

axis. Good luck is then defined as the situation that firms at the high-level axis performed worse 

than the average return of the firms competing at the low-level axis. Bad luck is defined as the 

situation that firms at the low-level axis performed better than the average return of the firms 

competing at the high-level axis. The results show that ten banks which successful performance 

trajectories of at the low-level axis were driven by good luck and those of two firms at the 

high-level axis were driven by bad luck. This implication supports the proposition of equifinality: 

even without knowing their underlying strategic differences, firms can be grouped simply by their 

observed performance (von Bertalanffy, 1968; Katz and Kahn, 1978). 

The research is different from prior literature by distinguishing good luck from bad luck. It is 

also unique to identify subpopulations and the heterogeneous performance trajectories in the 

banking industry. In addition, the performance driven by good luck or bad luck should be excluded 

when researchers investigate the sources of superior performance. There are several potential 

extensions for future research. Organizational variables, such as brand value, knowledge 

accumulation of employees, and organizational culture can be added to the research model to 

investigate the effects of these latent factors on long-term performance trajectories whenever they 

are available. Further, the LCGA assumes homogeneous within groups, that is, variation within 

groups is zero. the LCGA groups can be used as a basis for growth mixture models or other growth 

models, in order to examine the common factors within groups and heterogeneous factors between 

different groups. This extension of the model would help identify sources for the observed 

differences in performance trajectories. 
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How Sustainable is Sustained?: The Latent Trajectory of 

Performance in Baking Industry 
 

Dr. Fen-may Liou and Dr. Chin-Hui Hsiao, Chihlee Institute of Technology, Taipei, Taiwan 
 

 

ABSTRACT 
 

This paper introduces a new methodology, Latent Class Growth Analysis (LCGA), to identify firms with 

sustained competitive advantage. LCGA models the probability of membership in the observed distinct 

(performance) trajectory groups where the grouping variable (the latent factor) is unavailable or unknown; it 

provides an appropriate procedure to capture information about interindividual differences in intraindividual change. 

In our paper, the trajectory of performance is defined by market-to-book ratio (MTB), a common indicator 

approximating Tobin’s q, to measure the competitive advantage of the firm. Using MTB as the performance 

indicator, we apply LCGA to US banking industry in the last 15 years and distinguished three performance-

difference groups. The latent trajectory groups identified by MTB are heterogeneous in their dynamic capabilities. 

This paper contributes to the strategic management research by showing how one may predict the status of sustained 

competitive advantage from a series of historical performance. 
 

INTRODUCTION 
 

Historical financial performance is widely used to examine the existence of sustained competitive 

advantage. A firm is said to have sustained competitive advantage if it has achieved long-term persistent superior 

performance, that is, persisting profits above the norm. Previous studies have used long-term series of performance 

data from accounting books to detect persistent superior performance (e.g., Henderson, Raynor, and Ahmed, 2012; 

McGahan and Porter, 1999, 2003; Powell, 2003; Powell and Lloyd, 2005; Powell and Reinhardt, 2010; Ruefli and 

Wiggins, 2003; Wiggins and Reufli, 2002, 2005). These studies do not pay attention to the random-walk process 

associated with financial indicators under study. If a financial performance indicator follows a random-walk process, 

whether the yearly performance is driven by an antecedent (such as competitive advantage) or simply by luck is 

undetermined (Denrell, 2004). Therefore, the methodology used to identify persistent superior performers should be 

able to distinguish performance driven by firm specific factors such as capabilities from other random factors such 

as luck (Denrell, Fang, and Zhao, 2013; Henderson, Raynor, & Ahmed, 2012). Prior studies either ignore the 

heterogeneity within an industry or do not address the sequence of ordering of performance. The Latent Class 

Growth Analysis (LCGA), a methodology new to the management field, can be used to identify the group of 

outperformers without the constraints in the prior literature. 
 

LCGA, which is widely used in social and psychological sciences, is a person centered multi-parameter 

approach (Nagin, 1999, 2005). It models the probability of membership in the observed distinct (performance) 

trajectory groups where the grouping variable is unavailable or unknown (Jung and Wickrama, 2008; Nagin, 1999, 

2005; Nagin and Tremblay, 2001); thus it provides an appropriate procedure to capture information about 

interindividual differences in intraindividual change (Nagin, 1999). It can be used to identify growth patterns that 

describe continuity and change among members of different subpopulations (Jung and Wickrama, 2008).  
 

We apply LCGA to the banking industry and successfully identify three subgroups with distinct latent 

performance trajectories. Entry status and lagged performance are included in the models to examine the effects of 

luck and cumulative advantage on the model (Denrell, 2004; Denrell, Fang, and Zhao, 2013; Henderson, Raynor, 

and Ahmed, 2012). We also control for economic growth, which is believed to be positively correlated with 

performance for all firms. Hence, each latent trajectory identified by the model reflects the average dynamic 

capability of a group of firms to improve or sustain a specific performance indicator. 
 

LITERATURE REVIEW 
 

Persistent performance 

A firm that out-performs its rivals in an industry in terms of abnormal returns (Barney, 2001; Peteraf, 1993; 

Porter, 1985; Denrell, Fang, and Winter, 2003) or superior returns to their rivals or industry average (Besanko et al., 
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2000; Ghemawat and Rivkin, 1999; Brandenberger and Stuart, 1996) in a long time is said to have sustained 

competitive advantage. Although persistent performance is defined as “the tendency of abnormally high or low 

profits to continue in subsequent periods” (McGahan & Porter, 2003), there is no universal accepted operational 

definition about persistent or sustained superior performance. While competitive advantage is usually measured with 

a selected financial indicator, sustained competitive advantage is often identified by methodologies such as 

modeling and grouping approach. Autoregressive model is the most commonly used methodology for examining the 

persistence of profits. Other methodologies, including full information maximum likelihood; panel unit root tests; 

structural equation modeling; trend analysis, including polynomial time trends and structural time series; and 

Bayesian approach (Denrell, Fang and Zhao, 2013) have been used to examine the persistence of profitability (Liou 

and Ding, 2014). These methodologies utilize parametric and non-parametric approaches, both of which have 

limitations in identifying superior performers.  

 

When examining sustained superior performance, the autoregressive model has several limitations. First, 

the cardinal data it uses are not directly comparable across time periods, and the model requires assumptions about 

the true form of the unobserved performance distribution (Powell and Reinhardt, 2010). Second, it statistically 

neutralizes the differences between firms and fails to account for their unique characteristics (Hansen, Perry, and 

Reese, 2004). Third, it estimates just one growth pattern to describe the entire population, which oversimplifies the 

diversity of growth patterns found in real industries that describe continuity and change among members of different 

subpopulations with heterogeneous performance (Jung and Wickrama, 2008). For ordinal (rank-based) approaches, 

the investigation of persistent profits does not specify the time sequence of shifts in ranking or wins, which is 

essential for recognizing growing outperformers (Liou and Ding, 2014). The LCGA does not have the constraints 

described above; it captures time-ordering performance trajectory for each heterogeneous group of firms. 
 

Persistent performance in banking industry 

Several studies examine the persistence of long-term performance of banks. For example, using a sample of 

large US banks observed over the period 1986-1991, Levonian (1993) found that despite restraints on competition 

imposed by bank regulation, abnormal profits tend to be temporary, rather than permanent. The speed of 

convergence, however, is slower than that suggested by most manufacturing studies. Roland (1997) tested the 

persistence of profit for US bank holding companies, using the quarterly data for the period 1986-1992. They found 

that persistence is stronger for banks with below-average performance. Berger et al. (2000) developed non-

parametric methods to examine the persistence of bank profit. The strength of persistence has been found to differ 

between banks initially located in the top and bottom deciles of the distribution of banks by performance. Knapp et 

al. (2006) reported persistence estimates for a sample of US banks, suggesting that profits take about five years to 

converge towards average industry norms. 
 

Bertrand and Schoar (2003), Malmendier and Nagel (2011), and Malmendier, Tate, and Yan (2011) pointed 

out that banks learned from their performance in the 1998 crisis; thus they performed better in the latter crisis. 

Fahlenbrach et al. (2012) showed that a bank’s poor performance in stock returns during the 1998 crisis was 

significantly related to its stock return performance in 2014 and probability of failure during the2008 financial crisis.  
 

THE LATENT CLASS GROWTH ANALYSIS 
 

LCGA is a multiple-group approach based on semi-parametric group-based trajectory analysis (Jones, 

Nagin, and Roeder, 2001). It is a statistical methodology developed by Nagin and Land (1993) in criminology and is 

adopted by other social science research for longitudinal data analysis (Bushway and Weisburd, 2006). This 

approach is a special case of growth mixture model in which the growth parameters are assumed to be invariant 

within classes (Jung and Wickrama, 2007, Muthén and Muthén, 2000). The latent class analysis approach has been 

proved useful in modeling the developmental path of individual characteristics and behavior for the heterogeneous 

population (e.g., McLeod and Fettes; Sturgis and Sullivan, 2008; Syed and Seiffge-Krenke, 2013; Van den Akker et 

al., 2013; Zheng, Tumin, and Qian, 2013; Nagin and Odgers, 2010 for an overview). 
 

It groups individuals in a way that the individual response trajectories within groups are homogeneous but 

those of different groups are heterogeneous (Jung and Wickrama, 2008; Sturgis and Sullivan, 2008). LCGA fits each 

group with a different model and assigns different parameter values across unobservable subpopulations (Jung & 

Wickrama, 2008). It is particularly useful to identify and model the probability of membership in distinct trajectory 
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groups where grouping variables are unobservable (Jung & Wickrama, 2008; Nagin, 1999, 2005; Nagin & Tremblay, 

2001).  
 

The classes derived from the latent trajectory analysis can be examined for their antecedents and their 

consequences (McLeod and Fettes, 2007). The antecedents can be the background variables as a predictor of class 

membership such as the unobserved strategy, organizational taxonomy, dynamic capabilities, or resources 

configurations while the consequences can be the class membership as a predictor of firm performance. 
 

 LCGA is different from the dummy variable approach, which is commonly used to indicate group 

membership. The dummy variable approach, which assigns dummy variables for group membership to evidence 

population heterogeneity and assumes invariant intercept and slope variances across groups. Alternatively, LCGA 

fits each of the different groups with different models and assigns different parameter values across unobserved 

subpopulations using latent trajectory classes (Jung and Wickrama, 2008). Hence, LCGA is more flexible over the 

between-group parameter constraints than the dummy variable approach (McArdle and Hamagami, 1996). 
 

LCGA is applied to variation individual growth parameters, rather than to the observed outcomes 

themselves, to identify the latent trajectory group variable (Jones et al., 2001). It identifies k latent classes (the latent 

trajectory groups) with qualitatively distinct developmental trajectories with different growth parameters estimated 

for each of the k latent classes (Sturgis and Sullivan, 2008).  
 

For competitive advantage analysis, LCGA can identify groups of firms with homogenous growth 

trajectories based on observable financial indicators (observable consequence variables). The group trajectory 

representing within-group members’ long-term performance pattern is driven by unobservable antecedents such as 

dynamic capabilities (Teece, Pissano, and Shuen, 1997). 
 

LCGA groups individual growth parameters rather than observed outcomes (Jones, Nagin, and Roeder, 

2001). It identifies K latent classes (the latent trajectory groups) with distinct developmental trajectories depicted by 

different growth parameters (Sturgis and Sullivan, 2008). The growth trajectory identified for each group is based on 

the vector ( )1 2, , , , 1, , ,i i i iTY y y y i n= =L K describing the longitudinal sequence of firm i’s performance over T points in 

time for n firms. In our case, the elements of Y are binary values indicating the presence or absence of superior 

performance in a given period. LCGA assumes that there are K unobserved trajectory subpopulations of firms within 

an industry, differing in parameter values. The maximum likelihood method is used to estimate these unknown 

parameter vectors that determine the shapes of the trajectories (Jones, Nagin, & Roeder, 2001; Jones & Nagin, 2007; 

Haviland, Jones, and Nagin, 2011). The form of the likelihood function can be selected to conform to three types of 

data: count data, psychometric scale data, or binary data. For binary data, which we use in the present study, the 

likelihood function is based on the Bernoulli distribution. The likelihood for each firm i, conditional on the number 

of group K (Jones and Nagin, 2007; Haviland, Jones, and Nagin, 2011), 
 

( ) ( )∑
=

=
k

k

i

k

k

k

i Yp;kYP
1

πβ
                                                                        (1)

 

 

where
kp is the probability of belonging to class k with corresponding parameter(s); 

kβ is the unknown 

parameter vector which determines the shape of the trajectory of group k; kπ is the group membership (in k) 

probability, which is not estimated directly but instead are estimated by a multinomial logit function: 
 

∑
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e
ep

1

θ

θ

                                                                            (2) 

 

where 1θ is normalized to 0, which ensures that each probability p
k 
properly falls between 0 and 1.  

 

The model assumes that conditional on membership in group k, the random variables yit, t=1,2, …, T,  are 

independent. Thus, 
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Figure 1: Framework of latent class growth analysis in competitive advantage study 

 

 

 
 

LCGA allows one to incorporate variables other than time, including both time-dependent covariates and 

time-invariant predictors (Jones, Nagin, and Roeder, 2001). In the present study, we include lagged performance 

(Bollen and Curran, 2004; 2006, Sec. 7.5) and the annual economic growth rate, both time-varying variables, in 

order to partial out the effects of cumulative advantage and environmental changes. The adjusted latent trajectories 

of the firms reflect their dynamic capabilities better. We use the binary logit model to fit the dichotomous data 

(superior performance or otherwise) resulting from the ‘above the industry average’ criterion. Moreover, we include 

the entry status (luck), a time-invariant variable, to examine and to delineate its effect on the groups formed by using 

the multinomial logit model. Figure 1 presents the framework of latent class growth analysis applied to the study of 

competitive advantage. 

Since entries and exits of firms are common in the free market, attrition and truncation of the performance 

series are unavoidable in the longitudinal data. Banks that delisted from the stock market because of bankruptcy, 

mergers, acquisitions, or went private disappeared from the dataset partway through the study period while newly 

listed banks are entered the dataset. In LCGA, all periods with missing performance values are retained. It is 

reasonable to include subjects with missing longitudinal data in the analysis of competitive advantage, because these 

firms account for a significant portion of activity in the industry and should not be ignored (McGahan and Porter, 

2003). 
 

To conduct LCGA, we need to determine the number of trajectory groups and the shapes of the trajectories. 

SAS Proc Traj software allows estimating up to a fourth-order polynomial. Regarding the number of trajectory 

groups, no “correct” solution is available, yet it can be determined by statistical and/or theoretical criteria 

(Greenbaum et al., 2004; Muthén, 2004; Nagin, 2005). The trajectory procedure in SAS (Jones, Nagin, and Roeder, 

2001) uses the Bayesian information criterion (BIC) to determine the model. The model with the smallest BIC is the 

one that best fits the data and is therefore considered the best model. 
 

EMPIRICAL STUDY 
 

Our sample firms are commercial banks with a period of 15 years from 1998 to 2012 because the market 

value is available during this period for many banks. We identify these banks in the Compustat North America 

Database by SIC code including commercial Banks (6020), savings institutions (6035 and 2036), and Functions 

related to deposit banking (6009). This industry shows three cycles during the study period. The number of banks 
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increased from 823 in 1998 to 915 in 1999 and decreased to 674 in 2012. We include banks with incomplete series 

but exclude those with less than 10 years of data. Thus we retained the data from 443 banks. 
 

Most studies in the strategy literature define superior performance operationally using the binary criterion 

that a firm’s financial return is higher compared to the industry’s average. We further define sustained competitive 

advantage as a persistent pattern of superior performance during the study period. We use market-to-book ratio (MB) 

to measure sustained competitive advantage as a proxy of Tobin’q (Amit, Livnat and Za-rowin, 1989)), which 

indicates the intangible resources of a firm (Villalonga, 2004).  
 

We turn MTB into a binary yearly time series. A bank is defined as superior (value 1) if it meets two 

criteria: (1) MTB is above the industry average and is greater than one in that specific year; and (2) the earnings of 

that specific year is positive. Its value is set as 0 otherwise. We then fit the LCGA model to these series to identify 

the developmental trajectories of the different groups. The performance in the previous year and the US annual 

economic growth rate, measured as the percent change of gross domestic product relative to the preceding period 

(U.S. Department of Commerce, 2001 to 2012) are used as time-variant covariates to control for the effects of 

cumulative advantage and external environmental changes on the trajectories. Furthermore, the firm’s first observed 

performance is used as a risk factor to examine the effects of entry status on group membership. The full trajectory 

period is 19 years, since we lose the first period in order to include the lagged performance. We test several LCGA 

models with different group numbers and polynomial degrees, and select the one with the lowest BIC value. 
 

The Result 

Figure 2(a) shows the performance trajectories (dynamic capabilities) identified by the best LCGA model 

for MTB. The solid lines present the average superior performance dummies within the group and the dashed lines 

are the predicted trajectories. Figure 2(b) displays the average values of the original financial indicators within each 

LCGA group. Table 2 reports the estimated parameters of the best model for each performance indicator, including 

the types and shapes of the trajectories. The effects of entry status on the trajectory memberships, lagged 

performance, and economic growth rate are also reported. The percentage of firms classified and the average 

number of years that each group achieved above-average performance relative to the number of observed years are 

listed in the last two rows in Table 1. 

 

 
(a) Performance trajectories 

 

 

 
(b) Average MTB 

Figure 2: Performance trajectories and average market-to-book ratio of the LCGA groups 

 

Table 1: Summary of LCGA grouping 

 Group 1 Group 2 Group 3 

Estimated parameters    

Intercept -1.28*** -3.71***† -3.01*** 

Linear   1.91*** 

Quadratic   -0.49*** 

Cubic   0.05*** 

Quartic   -0.002*** 

Time-varying covariate    

Lag MTB 1.39*** 4.03*** 2.62***  

Economic growth -0.67    11.2    18.18***  
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Time-stable covariate    

Initial status -  -1.19 2,01***  

    

Group percent 29.3% 34.9% 35.8% 

Times above average/year counts 4.5 / 13.5 1.1 /13.4 10.4 / 14.0 

 

MTB identifies three trajectory groups, Groups 1 and 2 have a pattern that is independent of time while 

Group 3 shows a quartic pattern (Table 1). This result is consistent with the findings in prior studies that persistent 

performance is stronger for banks with the inferior performance (Berger et al., 2000; Roland, 1997). Group 3, which 

includes 35.8% of the population, achieved superior performance 10.4 times out of an average of 14.0 observed 

years. This group also enjoyed the highest MTBs consistently over time (Figure 1(b)) although its superiority 

presents a downward trend (Figure 1 (a)). Many banks in Group 3 rank on Forbes’ 2014 best 100 banks, with all top 

10 banks are included. They are Prosperity Bancshares, Signature Bank, State Street, Bank of Hawaii, First Republic, 

SVB Financial Group, Bank United, Bankunited, East West Bankcorp, and Commerce Bancshares (the forth ranking 

bank, Commerce Bancshares is not included because of data shortage). 
 

In contrast, firms in Group 2 (34.9%) achieved superior performance only 1.1 times on an average over 

13.4 sample years; they operated on the axis of errors (Powell and Arregle, 2007). Group 1 (29.3%) achieved 

superior performance 4.5 times out of an average of 13.5 years. 
 

Performance in the previous year has significant positive effects on the annual performance (the observed 

trajectory shown in Figure 3(b)) of all three groups, supporting the effects of cumulative advantage on superior 

performance in the banking industry. In addition, the effect of economic growth is positively significant on the 

performance trajectories of Groups 1 but not Group 1 and 2. This result indicates that firms in Groups 1 and 2 fail to 

employ resources available to all firms (Powell, and Arregel, 2007), that is, they are unable to draw the opportunities 

during economic prosperity. Finally, the initial status does not affect the trajectory membership between Group 2 

and Group 1 but it significantly influences the trajectory membership between Group 3 and Group1. The following 

section discusses several findings and implications for theory and management in strategic field. 

 

DISCUSSION AND CONCLUSIONS 
 

We adopt a group-based, multi-parametric approach to capture the heterogeneity of firms’ performance 

trajectories in the banking industry. This approach lets us identify the long-term superior performing firms from the 

grouping results where competitive heterogeneity among groups is latent and unobservable. The LCGA identifies 

groups of banks based on the underlying factors embedded in the series of annual performance. Since we partial out 

the cumulated advantage (performance of the previous year) and luck (the initial status of performance), the 

performance trajectories of the memberships are likely to present the dynamic capabilities.  
 

For all groups, LCGA identifies one complete cycle from 2001 to 2010, a downward cycle from 1998 to 

2001, and an upward cycle from 2010 to 2012, which is consistent with the S&P 500 index. The average MTBs of 

all groups follow an upward trend since 1998, a downward trend since 2006, and a rebound in 2011/2012. Among 

the groups, the average MTB of Group 1 has been higher than the other two groups except 2011. Although the 

yearly performance fluctuated severely, the probabilities of being superiority of Group 1 has sustained throughout 

the study period. However, gaps in the probability of superiority between Group 1 and the other two groups are 

narrowing, signifying a much more severe competition than before in the banking industry. 
 

First mover in terms of early entry or innovation is one of the advantages of firms to generate superior 

performance (Lieberman and Montgomery, 1988). The finding that the initial status positively affects trajectory 

membership in the banking system supports the notion of the first-mover advantage. This finding is consistent with 

the findings of a prior study conducted in financial services industry (e.g., López and Roberts, 2002). 
 

Our research can be extended to various purposes. First, this paper uses MTB to measure the superiority of 

banks and identifies 175 banks with persistent superior performance. Other performance indicators such as return on 

assets, return, on equity, earnings per share, and price-earnings ratio can be used to measure the superiority of a firm. 

Since each performance indicator signifies a respective aspect of capability, these indicators can be used to infer the 

persistent superior performance. The long study period can also be divided into phases corresponding to economic 

environmental shocks. Second, the LCGA groups can be used as a basis for growth mixture models or other growth 
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models, in order to examine the common factors within groups and heterogeneous factors between different groups. 

This extension of the model would help identify sources of the observed differences in performance trajectories. 
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the Illinois State University Caterpillar Scholar (1998, 2003), the Illinois State University College of Business Outstanding 
Researcher Award (1997, 2009), the Wilma Jean Alexander Technology  Innovation Award (1997), and the Illinois State 
University Research Initiative Award (1995). Dr. Taylor has been married to his wife Michel for 30 years, and they have three 
children. 
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FRIDAY, JULY 25, 2014 
1:30:00 PM – 2:00 PM  
Room: Balcony 

KEYNOTE SPEAKER 
 
 

FRIDAY, JULY 25, 2014 
2:00 PM – 7:45 PM      Management, Business, Information Technology, Economics, & Human Resources  
Room:  Balcony               Session Chairs:  Tim Raffour, Dr. Jian Wu, Dr. Ze'ev Shtudiner, Dr. Wojciech B. Cieslinski 
 
Applications of Exotic Options in Corporate Finance: A Panorama.  #238 

Dr. Jian Wu, Professor of Finance, Neoma Business School – Rouen Campus, Mont-Saint-Aigna 

Can China Overtake the U.S. As The Global Economic Leader? 
Dr. Bala Maniam, Professor of Finance, Sam Houston State University, Huntsville, Texas 

Religious Souvenirs from the Holy Land – Is there a Deadweight Loss?  
Dr. Ze'ev Shtudiner, Ariel University, Israel 
Prof. Jeffrey Kantor, Ariel University, Israel 

The Influence of Organizational Trust upon Affective and Calculative Commitment.  #205 
Professor Dagmara Lewicka, AGH University of Science and Technology, Poland 

Model of Network Thinking in Management of Knowledge Flow Processes in Sports Enterprises.  #192 
Professor Wojciech B. Cieslinski, University School of Physical Education in Wroclaw, Poland 
Professor Andrzej Rokita, University School of Physical Education in Wroclaw, Poland 
Dr. Piotr Głowicki, University School of Physical Education in Wroclaw, Poland 
Dr. Iwona Chomiak-Orsa, Wroclaw University of Economics, Poland 
Jakub Mierzynski, Wroclaw University of Economics, Poland 

The Effect of Destination Image on Tourist Loyalty in Kinmen Battlefield Tourism: The Mediating Role of 
Tourist Satisfaction and the Moderating Roles of Tour Guide Interpretation Performance and Perceived Value  
#157 

Dr. Nien-Te Kuo, National Kaohsiung University of Hospitality and Tourism 
Dr. Kuo-Chien Chang, Chihlee Institute of Technology, New Taipei City, Taiwan (R.O.C.) 
Dr. Hui-Hsiung Huang, Chia Nan University of Pharmacy and Science, Taiwan 
Jui-Chou Lin, Ming Chung University, Taiwan 

An Efficient Clustering Method Based on Cuckoo Search for XML Documents.  #184 
Dr. Tsui-Ping Chang, Ling Tung University, Taiwan, R.O.C. 
Kun-Jheng Jhong, Ling Tung University, Taiwan, R.O.C. 
Dr. Shih-Ying Chen, National Taichung University of Science and Technology, Taiwan, R.O.C 

Manpower Need and Vocational Training of Electrical and Electronics Industry. 
Dr. Fu-Man Hsieh, National Taipei University 
En-Kuang (Daniell) Lin, Wenzao Ursuline University of Languages, Taiwan R.O.C. 
Hsin-Yi Chou, Wenzao Ursuline University of Languages, Taiwan R.O.C. 
Kung-Hou Lin, Wenzao Ursuline University of Languages, Taiwan R.O.C. 
Nai-Chung Chang, Wenzao Ursuline University of Languages, Taiwan R.O.C. 

Using Conjoint Analysis to Discover Guest Preferences and Willingness to Pay for Bed and Breakfast in 
Taitung. 

Dr. Chen-Te Lin, Kang Ning University, Taiwan 
Dr. I-Hua Lin, Taiwan ShouFu University, Taiwan 
Yi-Tsun Ho, Chang Jung Christian University, Taiwan 
Dr. Chen-Hsien Lin, Overseas Chinese University, Taiwan 

The Training Requirements and the Curriculum Design of the Meridian Therapy Industry Employees- A Case 
of San-Sui Tang Company.  

Dr. Fu-Man Hsieh, National Taipei University  
Meng Chen Yu, Wenzao Ursuline University of Languages, Taiwan R.O.C. 
Wei Bin Li, Wenzao Ursuline University of Languages, Taiwan R.O.C. 
Chian Chi Huang, Wenzao Ursuline University of Languages, Taiwan R.O.C. 
Chiao -Yi Chiu, Wenzao Ursuline University of Languages, Taiwan R.O.C. 

IPR Competition between Asymmetric Countries. 
Dr. Chia-Chi Wang, Tatung University, Taiwan 
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The Linkages of Network Relationship among the Systems of Nursing Homes. 
Dr. Chun-Yao Tseng, Tunghai University, Taiwan 
Dr. Sue-Ming Hsu, Tunghai University, Taiwan 

Worldwide GINI: Models, Pitfalls and Trends. 
Dr. Ayman Amer, Mount Mercy University, Cedar Rapids, IA 
Dr. John Robeson, Mount Mercy University, Cedar Rapids, IA  

Business Intelligence Tools to Analyze Data of Nursing Information System to Improve Clinical Quality of Care. 
Dr. Nan-Chen Hsieh, National Taipei University of Nursing and Health Science, Taipei, Taiwan 
Chen-Chang Lan, National Taipei University of Nursing and Health Science, Taipei, Taiwan 

Testing for Export Performance Differential and FDI Externalities: A Firm Level Analysis of Thai 
Manufacturing Plants. 

Chayanon Phucharoen, Chulalongkorn University, Bangkok, Thailand 

Is Corporate Governance a Moderator in the Relationship between Corruption and Economic Growth? 
Tzu-Yun Tseng, Nien-Su Shih, Feng Chia University, Taiwan, ROC 

The Global Business, MIS, Economics and Finance Research Conference, Tokyo - Research Scholars 
Tim Raffour (CPA), Alcatel-Lucent Japan CFO, Tokyo, Japan  

 
 

SATURDAY, July 26, 2014 and SUNDAY July 27, 2014 
 

Independent Research Meetings in Tokyo, Japan 
 

**HAVE A SAFE TRIP HOME! ** 
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競爭優勢理論相關之實證研究中，如何區分管理相關因素創造之績效，或是
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Management Journal於 2004 年、2012及 2013 年均刊登相關之研究論文。而

據統計分析，產業間之廠商績效則為一厚尾之統計分配(Nicholas et al., 
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Arrengel (2007)之主張，將廠商分為 [成功 ]與 [錯誤 ]兩軸競爭之次群體
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